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Stabilization of reaction-diffusion pulses by external forcing
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A pulse velocity equation under forcing is derived and the conditions for stationary wgineéng condi-
tions) are considered. It is found that there are two types of stationary pulses with symmetric and asymmetric
parameter sets in the phase-amplitude diagram. The pulses with a symmetric set are always unstable, whereas
the pulses with an asymmetric set may be stable. The stability criteria are presented.
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|. PROBLEM STATEMENT dependence with three zerg§. At first, we do not specify a

Recently[1], a pulse stabilization phenomenon by tempo-concrete form of the forcing; the only restriction is that the
ral forcing was reported. In our present research, we staffrcing must be small enough to avoid that the system jumps
from a different spatiotemporal situation, where the forcingfrom one branch of the piecewise linear reaction term to the
f_(x t) is nonmoving in the comoving fram@omoving forc- other one. This would lead to additional matching points and

' — an increasing number of solution intervals to be taken into

ing), i.e., traveling with the wavef(x,t)=f(¢), where£=x  5000unt. The considered reaction-diffusion equation under
—ctis a traveling wave coordinate ands the wave velocity. forcing reads

This situation can be modeled experimentally as a spatially
distributed light source which moves together with the
propagating wave. When the wave is stopgethned by M =—u-1+26u) +f_(X t) + @ (1)
inhomogeneitieswe just have spatial forcing. With this type ot ox®]
of forcing, pinning and stability were studied for front waves
in Ref. [2]. e . . where 6(u) is the Heaviside function and the forcirfgis a

In a reaction-diffusion system under comoving forcing ) — — . .
there is a family of wave solutions with different phades. function of only&: f(x,t)=f(¢). The traveling wave equation
This is due to the fact that the translational invariance of theobtained from Eq(1) is a Duffing-Holmes type equation
model equations is violated in the presence of §depen-  with a piecewise linear approximation of the cubic nonlin-
dent forcing and hence the phase value cannot be chosemarity. There have been, of course, many articles studying
arbitrarily. In other words, the wave cannot be centered abscillations in the Duffing-Holmes equatige.g., Refs[5]).
any point in space. In a preceding pap&l; we have studied This equation describes a particle moving in a double-well
the front velocity behavior under periodic comoving forcing potential in the presence of frictioV,(u) = —u?+u®, subject
of cosine type and now we will extend the analysis to puls&o a periodic force, where one identifiess) with a spatial
waves. To achieve this, we have to derive the velocity EAU8pordinate ¢ with time, andc with a friction coefficient. In
tion for pulse solutions and consider the zero velodity o naper, we will construct traveling wave solutions. Due to
=0) case then. The wave solutions are the basis for the conpq piecewise structure of the reaction teffifu)=—-u-1
_struction of 'ghe velocity eq_uation, providing one qt_*a”“ty Of+267(u), pulse solutions must consist of three pie¢es.,
interest, during the matching procedure. Settirs in the there exist two matching pointg, and EB). Imposing the

velocity equation we obtain a pinning condition for_the boundary conditions at infinity we obtai=cons}
wave. The next step is as follows. Fronts and pulses in the

unforced system have different stability features: the front is .
stable, whereas the pulse is unstable. Therefore, the essential U(§) =Bt S+ (9 - 1, €< &,
task in our research is an exploration of the stabilization
behavior of pulses in the presence of forcing. o e .
Ux(é) =B +B TUu(§+1, =E<§&, (2
Il. VELOCITY EQUATION 28) =Bz & UYL f=E<b ()
We use the piecewise linear approximation for a cubic o .
reaction term which is characterized by an inverted N-shaped Us(§) =Bge" {+ U -1, £= &,

Here we take into consideration that the eigenvallieis
*Electronic address: zemskov@physik.uni-magdeburg.de positive and\™ is negative \*=-c/2%\c?*/4+1=-c/2+y
"Electronic address: kassner@physik.uni-magdeburg.de are the eigenvalues of the homogeneous problemugfids
The phase is representative of the wave position relative to th@ particular solution of the forced equation.
forcing positioning and is expressed in terms of a matching point Reducing the number of matching equatighyg elimina-
coordinate for the piecewise linear model. tion of the constant8) we obtain the velocity equation
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_ (2 yaléy)) L (—cl2+ (&) mum (pulse solution when the friction coefficient is large

ANn| ————]+\"In G =0. (3 enough, whereas the front connects both maxima for smaller
values of the coefficient of friction. Moreover, since the sec-

This pulse velocity equation has a form similar to the frontond maximum is highefit is an absolute maximuyn the

velocity equation in the tristable modgd]. The mathemati- friction coefficient must be negative in this situation.

cal origin of this fact is that both waves have a three-piece

;tructgre with two matching *po.ints. In b(_)th cases one match- IIl. STATIONARY WAVES

ing point value(for example £;) is determined by the match-

ing conditions as a function of the other. The expression for Now we will look more closely at stationary waves cor-

the second matching point in the pulse case reads responding to a wave velocity equal to zero. The zeros of the
1 - velocity uniquely characterize the stationary solutions and in
gg =&+ In(—), (4) analogy to solid state physics we call these solutions pinned

AT\ a2+ yu(éo) waves, the zeros of the velocity curve indicating pinning

positions. Setting=0, it follows from Eq.(3) that the pulse

i.e., the matching point valug is a free parameter; the wave ! .
gp Uy P is motionless when

solution depends on this valug.

When deriving Eqs(3) and(4), it was noted that there are — _Tr s
two restriction conditions Uéo)e=0= U(&o)e=o, @)
CI2 + yU(é) > 0 and —c/2 +yu(£)) > 0; (5) SO that Eq(4) transforms into
those are a mathematical consequence of the appearance of &= &~ IN[U(£0) =) (8)

exponential terms in the matching equations and, henc
logarithms in the velocity equation. Their origin is not the
forcing type but due to the existence of the second matchin
point. The next restriction is evident from the fact thgt
must be larger thag,. Together with the first restriction in
Eg. (5), this gives the interval of possible values f{;):

From the result obtained, it may be concluded that stationary
fronts and pulses exist for different parameter values because
the front situation withu(&) =0 is eliminated from the pulse
case due to the term[a(&)] in 58. When u(&) —0 the
second matching point tends to infinity, i.e., the pulse profile
transforms into the front curve. So, the restriction conditions

c 5) and(6) are now reduced to
- <) <1 6 8O

0 < U(&p)e=0 < 1 andu(&p)e=o > 0. 9

The appearance of these restrictions is not a particular _ _ - _
feature of the forced system. The conditiais restrict the ~ Equation (7) describes the condition when the pulse is
choice of the reaction functiof{u). It can be shown that for Stopped(pinning condition. Indeed, for the stationary case
the unforced system with the general forffu)=-u-a, the comoving forcing degenerates into a spatial one, so that
+(ay+a,) 6(u), wherea, , are constant, the same restrictions "€re the pinning effector, in other words, the propagation

require asymmetrya,>a;, and when the function is sym- Iaulure) ('js. reproducetd, meat\rr]ung ﬂ;]a:ha vlvavet_that |fs |n|t_|a;c]ed in
metric, a pulse solution does not exist. This fact is well € medium cannot pass through the location of an inhomo-

known in the bistable modebee[4]) geneity. Instead, it will be pinned at this location. This is best
The origin of the restrictions can be explained using c_iemonstrated when the !nhpmoggneity is abrupt or a step
particle-in-a-potential analogy for the traveling wave equa-me [2]. In the case of periodic forcing there appear multiple

tion. The potentiaV/(u) « [f(u)du is piecewise parabolic, and pinni_rég positio_nz._T? di_scussf this_ ph?nomenon in detail we
the pulse solution connects states with=u,=-a; as & consider a periodic forcing of cosine type,

— x%. When the maximum of tha, branch is higher than T _
the maximum of thea; zone, a pulse solution exists. Other- f(¢) =fo cod), fo=const. (10)

wise, ther_e is no solutiqn at all. In this paper we consid_er &Jsing the form(10), the particular solutiom(£) of the forced
system with a symmetrié(u) but under forcing. The peri- equation becomesu(&)=Rcog&)+Qsin(8), where R
odic forcing breaks the symmetry by moving the reactionzzfol(cz+4) Q=—cf,/(c?+4). For the stationary wave®
function up and down in theu, f(u)] phase plane, causing - “anqu(#) has only one cosine term. Hence the pinning
changes in the excitability of the local dynamics as well ascondition(?) yields

transitions between mono- and bistabil[&j.

Special aFtention rn_ust be paiq to the first formyla in EQ. cod &) = Cog(gg)_ (12)
(5). Comparison of this result with the front velocity equa-
tion ¢/ 2+yu(&,) =0 [3] shows that the pulse velocity must be From the first restriction condition i(®) it follows that the
different from the front velocity; in the case of constant forc- pulse relationshig1l) holds when cogo) #0.
ing at a positive value of the forcing amplitude, the pulse Using the expressions f@f, andu(&y), the pinning con-
velocity is larger than that of the front. This fact can bedition (11) can be rewritten as a pair of relationships
explained again using the particle-in-a-potential analogy. In ¢
this analogyc is a fncpqn coefflc_lgnt. Therefore, the part|c_le W&y oo = 0 cog &) = 2™ (123)
returns to its origina(initial) position at a lower local maxi- 2
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0 forcing amplitudefg", so that no pulses exist &t < o'
However, in the general case whienl, 2, ... infinite sets of
solutions appear and the minimuf§'"" tends to zero. The

2 asymmetric solution(12g at m=0 holds only when the

- phaset, is negative. Inserting Eq12) into Eq.(8) we obtain

4 &=~ &+ 2mm, (139
i e, &= &+ 27l (13b)
—
" ) 5 for the A set(12g and B se(12b), respectively. In particular,

for the (asymmetrig A set atm=0 both matching points are
placed symmetrically about zeré;:—go, whereas for the B
set atl=1 the second matching point is shifted by Zrom
the first one.

LB B B
| 4
ry 4

fo IV. STABILITY CRITERIA

The question now arises whether these pulse solutions are
stable. The details of the linear stability analysis of the front
solutions in forcedinhomogeneoygseaction-diffusion equa-
tions can be found, for example, in R¢R]. To investigate
stability, one considers a perturbed solution of the form
u(é) +T(ée, whereu(é) is the unperturbed solutiofi(£) is

g, a small perturbation, and is its growth rate. The linearized
L S W ' T variational equation for the perturbation reads

o
o
K

o
Q
o

2
3—;+c%—[1+w—26(u)]ﬁzo, (14)

where 8(u) is the Dirac delta function. By satisfying the
boundary conditions the perturbation eigenfunction is ob-
tained as

(b)

FIG. 1. Amplitude versus phase in tli&,,fy) plane. Diagram
for stationary pulses under periodic forcing. The figure shows the -~
forcing parameter plane whe¢a) the asymmetri¢A set, Eq.(123)] Uy(¢) = Ble)\ £, &= &,
and(b) the symmetridB set, Eq.(12b)] parameter sets are shown.

The A set is displayed fom=0 and the B set witth=1. ~ ~ Ty, o~ T .
Up(é) =Bye 4+ By &, < é< &, (15)

— _f_O — p 27l ~ 5=
Ulé)o-o = ) codp) =€72". (120 Us(§) =Bse" £, £= &,

Due to the restrictiong9), the phase, in Eq. (129 limitsto  where the signs Oﬁi:—C/Zi\fCZ/4+l+wE—C/2137 are
&<am, wherem=0,+1,+2,... and in Eq(12b) the re- taken into accouritComputing the determinant of the matrix

strictions yieldl=1,2,... but thephaseé, may be arbitrary.  at (B,,B,,,By,, Bs) for the system of matching equations we
The relationshipg12) describe sets of curves that are asym-gptain the growth rate equation. In the stationary case, it
metric [Eq. (128 and Fig. 1a)] and symmetridEq. (12b) reads

and Fig. 1b)] with respect to the Gp axis on the(&,fp)

diagram. For the sake of brevity, we denote solutions satis- Yv—1)(y*—1)= 1 1

fying Egs. (128 and (12b) as belonging to A and B sets, Ox= D0 )= el (19
respectively. Figure 1 shows only the first two examples, afvhere7= V1+w and the jump parametegsand y* are given
m=0 andl=1, of the dependencig¢42), because other cases py

with m# 0 andl>1 may be reduced to these examples by

rescaling the forcing amplitude by fact@®™. The symmet- o du(é) =0
ric solution (12b) is periodic in &, and there is a minimal x=[1-u(€)e=0+ T

&&

2Except for the forbidden situation when ¢&g=0. This is true ®Here we consider the case of the growth rateaving positive or
for both cases Eq$12g and(12b). small negative values, so that &+ 0.
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FIG. 2. Growth rate dependenes= w(¢&) for stationary pulses 0.004 |
under periodic forcing with the parameter $&2h). The curves in ]
the diagram are described by Eq46) and (19) with 1=1 and
plotted in the interval —-3/2<&,<3w/2. 0.002
— du(é)c=o 1 %
1 -u(o)e=0~ d—gc - (17) o I FPana
&=, 1 -
Here the pinning conditioli7) has been taken into consider- —0.002 |
ation. From Eqs(17), it follows that the jump parametejs
and y* are the same for constant forcing.
~Now, to be specific, we use the periodic fod®). Then (b)—0-004
U(é)e=0=(fo/2)cog¢), and one can see from E({L3g that
for the A set both jump parameters are equdl= y, and FIG. 3. Growth rate dependenag=w(&;) for stationary pulses
hence the growth rate equatioht) reads under periodic forcing with the sét2g). The curves in the diagram

are described by E¢18) with m=0 and plotted in the interval®)

(18) —ml2<£,<0 and(b) -37/2<éy<-m/2. The upper curve corre-
sponds to the plus sign on the right side of Et8) and the lower
one to the minus sign.

- f k4
yx—1=i<500§%ﬂ

with x=|1-(fo/2)[cog &) +sin(&y)]|. For the B sefsee Eq.

N .
(13b)], the factorsy and y* are different, only the “plus sign curve” intersects thedg-axis[Fig. @],

fo ) whereas on the intervgb) —37/2<&,<-m/2 both curves
=|1- 5[005(50) +sin(&)] |, intersect this axi§Fig. 3b)]. Since in the last case the curves
increase with growth of the phagg the stability behavior is

f crucially defined in both casgs) and (b) by the plus sign
* = ‘ 1 __0[005(50) - sin(go)]‘ , (190  curve. In each intervala) and(b) (see Fig. 3, the A set has
two regions: the first region atm{2k+1)/2<&<&X k

crit?

and Eq.(16) keeps its form. However, in the particular case—(k) 1, where the pulse is stable, and the second region at
wheng&=mn,n=0,+1,+2, ..., wehavey* = y and Eq.(16) gf:m< & <—mk/2, where the pulse is unstable. To determine
reduces to Eq(18) for the B set as well. the values of the critical poin Cn)t we setw=0 in Eq. (18

The growth rate equationd6), (19), and (18) are pre-  with plus sign. Theriy=1 and we obtain the equation
sented graphically in Figs. 2 and 3, respectively. The curves
are plotted for the interval -8/2<§;,<3w/2. The diagram fo fo
in Fig. 2 shows that there are curvesw(&,) for positive 1 —E[cos(go) +sin(&)]| =1 +E cod &), (20
and negative values of the growth rate Therefore, there
are no stable pulses under forcing with the B set. The stabil-
ity of the pulses with the A set is especially noteworthy. InWhich has two solutions: tag)+2=0 and(fy/2)sin(§)-2
this situation, there exist two curves on each inte(#a. 3.  =0. For the second case, however, which is valid when
Each curve corresponds to a solution of Etg) with a dif-  |fo| >4, there appear more than two matching points for the
ferent sign on the right side. The equation with positive sigrpulse profile, because the particular solution(é)
describes the upper curve; the lower curve corresponds ®(fy/2)cogé) may then have a magnitude larger than unity
Eq. (18) with negative sign. In the intervah) —7/2<£<0  and the whole solution(§) intersects the @axis more than
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FIG. 4. Pulse profiles with the set2b) when(a) &=-1.56 and FIG. 5. Pulse profiles with the parameter 6623 when(a) &,
(b) &=-m. The casgb) illustrates also a pulse with the A skt =-1.2 and(b) £,=-4.712. Both pulses are stable.
this &, value the expressiond2a and(12b) yield the same resglt
Both pulses are unstable. V. CONCLUDING REMARKS

twice? This situation is beyond the scope of the present

problem. Therefore, the appropriate solution is only the first The wave stabilization phenomenon takes place for many
one,g(k) =-arctari2) =-1.11,-4.25 fok=0, 1, respectively. or

cing functions. For example, we have also considered a
crit™ "y

These values are precisely the same positions as those of thnple polynomial functiorf(&)=f,—&, fo=const, as forc-
local extrema of the,-f, curve in Fig. 1a) in the intervals  ing. The minus sign and the quadratic functidrere are
(@ and (b). Indeed, from Eq. (129 it follows that essential to provide only two matching points in the pulse
dfy(&)/dé=0 when&,=-arctari2). profile and thef, term—to realize(satisfy) the restriction

All of the preceding is intended to illustrate the behaviorcondition (9). The particular solution readsi(¢)="f,— &
of the waves under forcing and explore the stabilization cri—2(c?+cé+1), and the pinning conditio?) yields &,=—&,
teria. Now it is instructive to present the concrete pulse proi.e., the stationary wave profile is symmetric about the 0-
files. They are exhibited in Figs. 4 and 5 for the B set and Aaxis. For this type of solution, the jump parametgrand y*
set, respectively. In both cases the pulse profile may be synare equal to one another and the growth rate equation takes
metric or asymmetric to the Q-axis. But form=0 the pulses the form like Eq.(18)
corresponding to the A set have symmetric profiles. The
pulses for the B set are usually asymmetric, and there is only ~ _ 2 T

' T : y—1=x[fo-&-2]7,

one specific phase valug=-l, when the pulse with the B
set is symmetric. In this case, both equati@hiag) and(12b)
give the same forcing amplitude, i.e., both pulse solutiongvith X=\3—f0—2§0+§(2)|. From Eq.(21), one may find that,
coincide. The pulse for this situation is displayed in Fign)4 for example, when the forcing parametefjs 2.5, the pulse

(21)

for 1=1. The value of the forcing amplitude is extremely is stable for the phase$=-0.7,...,-0.64(the interval of
small and the oscillations in the wave profile are difficult if validity is constrained by —1y2<§,< O).6
not impossible to detect. There are pulses with ¢QRig. In conclusion, we emphasize the main result of the work:

5(a)] and many crests. The many-crest pulgéig. 5b)] can  there exist forcing parameter intervals such that the pulse
appear for both sets, which requires a large value of thavave can be stabilized by periodic external forcidée have
phase diﬁerence&fzgg—go. The stable and unstable pulse

profiles are similar, so that in Fig. 5 only stable pulses ar ®Here we still investigate the stability of the pulse solution. If we

depicted. consider the front wave, then the simplest polynomial function is a
- linear ramp.

“We are reminded here that the fixed points of the unforced sys- This is just an illustration. We did not perform the regular com-
tem are placed ai(§— to)=-1. putations and the analysis of curves.
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demonstrated this result for the stationary case, i.e., for thphenomena in periodically forced reaction-diffusion systems
spatial forcing. Since the pulse may be interpreted as a bourtd be explored7].

pair of fronts and then the pulse stability depends on the
interaction between these fronts], the aim of our new re-
search is to construct a pair of fronts moving with different
velocities or, in other words, a pulse with growing or shrink-  The authors thank A. A. Polezhaev for useful discussions
ing profile. The calculations will illustrate how wavésont  and acknowledge support by the DFG Grant No. FOR 301/
and back interact during collisions, and how they are influ- 2-1 (3) in the framework of a research plan on “Interface
enced by local distrurbances. There exist many interestingynamics in pattern forming processes.”

ACKNOWLEDGMENTS

[1] C. Crawford and H. Riecke, Phys. Rev.@5, 066307(2002. [5] P. J. Holmes, Philos. Trans. R. Soc. London, Se2%32 419
[2] A. Prat and Y.-X. Li, Physica D186, 50 (2003. (1979; R. A. Mahaffey, Phys. Fluidd€l9, 1387(1976.
[3] E. P. Zemskov, K. Kassner, and S. C. Miller, Eur. Phys. J. B [6] E. P. Zemskov, Phys. Rev. B9, 036208(2004).

34, 285(2003. [71 A. L. Lin, A. Hagberg, E. Meron, and H. L. Swinney, Phys.
[4] H. P. McKean, Adv. Math.4, 209 (1970. Rev. E 69, 066217(2004).

056208-6



