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A pulse velocity equation under forcing is derived and the conditions for stationary waves(pinning condi-
tions) are considered. It is found that there are two types of stationary pulses with symmetric and asymmetric
parameter sets in the phase-amplitude diagram. The pulses with a symmetric set are always unstable, whereas
the pulses with an asymmetric set may be stable. The stability criteria are presented.
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I. PROBLEM STATEMENT

Recently[1], a pulse stabilization phenomenon by tempo-
ral forcing was reported. In our present research, we start
from a different spatiotemporal situation, where the forcing
f̄sx,td is nonmoving in the comoving frame(comoving forc-

ing), i.e., traveling with the wave,f̄sx,td= f̄sjd, wherej=x
−ct is a traveling wave coordinate andc is the wave velocity.
This situation can be modeled experimentally as a spatially
distributed light source which moves together with the
propagating wave. When the wave is stopped(pinned by
inhomogeneities) we just have spatial forcing. With this type
of forcing, pinning and stability were studied for front waves
in Ref. [2].

In a reaction-diffusion system under comoving forcing
there is a family of wave solutions with different phases.1

This is due to the fact that the translational invariance of the
model equations is violated in the presence of thej depen-
dent forcing and hence the phase value cannot be chosen
arbitrarily. In other words, the wave cannot be centered at
any point in space. In a preceding paper[3], we have studied
the front velocity behavior under periodic comoving forcing
of cosine type and now we will extend the analysis to pulse
waves. To achieve this, we have to derive the velocity equa-
tion for pulse solutions and consider the zero velocitysc
=0d case then. The wave solutions are the basis for the con-
struction of the velocity equation, providing one quantity of
interest, during the matching procedure. Settingc=0 in the
velocity equation we obtain a pinning condition for the
wave. The next step is as follows. Fronts and pulses in the
unforced system have different stability features: the front is
stable, whereas the pulse is unstable. Therefore, the essential
task in our research is an exploration of the stabilization
behavior of pulses in the presence of forcing.

II. VELOCITY EQUATION

We use the piecewise linear approximation for a cubic
reaction term which is characterized by an inverted N-shaped

dependence with three zeros[4]. At first, we do not specify a
concrete form of the forcing; the only restriction is that the
forcing must be small enough to avoid that the system jumps
from one branch of the piecewise linear reaction term to the
other one. This would lead to additional matching points and
an increasing number of solution intervals to be taken into
account. The considered reaction-diffusion equation under
forcing reads

]u

]t
= − u − 1 + 2usud + f̄sx,td +

]2u

]x2 , s1d

whereusud is the Heaviside function and the forcingf̄ is a

function of onlyj: f̄sx,td= f̄sjd. The traveling wave equation
obtained from Eq.(1) is a Duffing-Holmes type equation
with a piecewise linear approximation of the cubic nonlin-
earity. There have been, of course, many articles studying
oscillations in the Duffing-Holmes equation(e.g., Refs.[5]).
This equation describes a particle moving in a double-well
potential in the presence of friction,Vsud~−u2+u4, subject
to a periodic force, where one identifiesusjd with a spatial
coordinate,j with time, andc with a friction coefficient. In
our paper, we will construct traveling wave solutions. Due to
the piecewise structure of the reaction termfsud=−u−1
+2usud, pulse solutions must consist of three pieces(i.e.,
there exist two matching pointsj0 and j0

*). Imposing the
boundary conditions at infinity we obtainsB=constd

u1sjd = B1e
l+j + ūsjd − 1, j ø j0,

u2sjd = B21e
l+j + B22e

l−j + ūsjd + 1, j0 ø j ø j0
* , s2d

u3sjd = B3e
l−j + ūsjd − 1, j ù j0

* .

Here we take into consideration that the eigenvaluel+ is
positive andl− is negative,l±=−c/2±Îc2/4+1;−c/2±g
are the eigenvalues of the homogeneous problem, andūsjd is
a particular solution of the forced equation.

Reducing the number of matching equations(by elimina-
tion of the constantsB) we obtain the velocity equation
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1The phase is representative of the wave position relative to the

forcing positioning and is expressed in terms of a matching point
coordinate for the piecewise linear model.
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l− lnSc/2 + gūsj0d
− l− D + l+ lnS− c/2 + gūsj0

*d
l+ D = 0. s3d

This pulse velocity equation has a form similar to the front
velocity equation in the tristable model[6]. The mathemati-
cal origin of this fact is that both waves have a three-piece
structure with two matching points. In both cases one match-
ing point value(for example,j0

*) is determined by the match-
ing conditions as a function of the other. The expression for
the second matching point in the pulse case reads

j0
* = j0 +

1

l+ lnS − l−

c/2 + gūsj0d
D , s4d

i.e., the matching point valuej0 is a free parameter; the wave
solution depends on this valuej0.

When deriving Eqs.(3) and(4), it was noted that there are
two restriction conditions

c/2 + gūsj0d . 0 and −c/2 + gūsj0
*d . 0; s5d

those are a mathematical consequence of the appearance of
exponential terms in the matching equations and, hence,
logarithms in the velocity equation. Their origin is not the
forcing type but due to the existence of the second matching
point. The next restriction is evident from the fact thatj0

*

must be larger thanj0. Together with the first restriction in
Eq. (5), this gives the interval of possible values forūsj0d:

−
c

2g
, ūsj0d , 1. s6d

The appearance of these restrictions is not a particular
feature of the forced system. The conditions(5) restrict the
choice of the reaction functionfsud. It can be shown that for
the unforced system with the general formfsud=−u−a1

+sa1+a2dusud, wherea1,2 are constant, the same restrictions
require asymmetry,a2.a1, and when the function is sym-
metric, a pulse solution does not exist. This fact is well
known in the bistable model(see[4]).

The origin of the restrictions can be explained using a
particle-in-a-potential analogy for the traveling wave equa-
tion. The potentialVsud~efsuddu is piecewise parabolic, and
the pulse solution connects states withu1=u2=−a1 as j
→ ±`. When the maximum of thea2 branch is higher than
the maximum of thea1 zone, a pulse solution exists. Other-
wise, there is no solution at all. In this paper we consider a
system with a symmetricfsud but under forcing. The peri-
odic forcing breaks the symmetry by moving the reaction
function up and down in thefu, fsudg phase plane, causing
changes in the excitability of the local dynamics as well as
transitions between mono- and bistability[2].

Special attention must be paid to the first formula in Eq.
(5). Comparison of this result with the front velocity equa-
tion c/2+gūsj0d=0 [3] shows that the pulse velocity must be
different from the front velocity; in the case of constant forc-
ing at a positive value of the forcing amplitude, the pulse
velocity is larger than that of the front. This fact can be
explained again using the particle-in-a-potential analogy. In
this analogy,c is a friction coefficient. Therefore, the particle
returns to its original(initial) position at a lower local maxi-

mum (pulse solution) when the friction coefficient is large
enough, whereas the front connects both maxima for smaller
values of the coefficient of friction. Moreover, since the sec-
ond maximum is higher(it is an absolute maximum), the
friction coefficient must be negative in this situation.

III. STATIONARY WAVES

Now we will look more closely at stationary waves cor-
responding to a wave velocity equal to zero. The zeros of the
velocity uniquely characterize the stationary solutions and in
analogy to solid state physics we call these solutions pinned
waves, the zeros of the velocity curve indicating pinning
positions. Settingc=0, it follows from Eq.(3) that the pulse
is motionless when

ūsj0dc=0 = ūsj0
*dc=0, s7d

so that Eq.(4) transforms into

j0
* = j0 − lnfūsj0dc=0g. s8d

From the result obtained, it may be concluded that stationary
fronts and pulses exist for different parameter values because
the front situation withūsj0d=0 is eliminated from the pulse
case due to the term lnfūsj0dg in j0

* . When ūsj0d→0 the
second matching point tends to infinity, i.e., the pulse profile
transforms into the front curve. So, the restriction conditions
(5) and (6) are now reduced to

0 , ūsj0dc=0 , 1 andūsj0
*dc=0 . 0. s9d

Equation (7) describes the condition when the pulse is
stopped(pinning condition). Indeed, for the stationary case
the comoving forcing degenerates into a spatial one, so that
here the pinning effect(or, in other words, the propagation
failure) is reproduced, meaning that a wave that is initiated in
the medium cannot pass through the location of an inhomo-
geneity. Instead, it will be pinned at this location. This is best
demonstrated when the inhomogeneity is abrupt or a step
line [2]. In the case of periodic forcing there appear multiple
pinning positions. To discuss this phenomenon in detail we
consider a periodic forcing of cosine type,

f̄sjd = f0 cossjd, f0 = const. s10d

Using the form(10), the particular solutionūsjd of the forced
equation becomes ūsjd=Rcossjd+Q sinsjd, where R
=2f0/ sc2+4d, Q=−cf0/ sc2+4d. For the stationary wavesQ
=0, andūsjd has only one cosine term. Hence the pinning
condition (7) yields

cossj0d = cossj0
*d. s11d

From the first restriction condition in(9) it follows that the
pulse relationship(11) holds when cossj0dÞ0.

Using the expressions forj0
* and ūsj0d, the pinning con-

dition (11) can be rewritten as a pair of relationships

ūsj0dc=0 =
f0

2
cossj0d = e2sj0−pmd, s12ad
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ūsj0dc=0 =
f0

2
cossj0d = e−2pl . s12bd

Due to the restrictions(9), the phasej0 in Eq. (12a) limits to
j0,pm, where m=0, ±1, ±2, . . . and in Eq.(12b) the re-
strictions yieldl =1,2, . . . but thephasej0 may be arbitrary.2

The relationships(12) describe sets of curves that are asym-
metric [Eq. (12a) and Fig. 1(a)] and symmetric[Eq. (12b)
and Fig. 1(b)] with respect to the 0-f0 axis on thesj0, f0d
diagram. For the sake of brevity, we denote solutions satis-
fying Eqs. (12a) and (12b) as belonging to A and B sets,
respectively. Figure 1 shows only the first two examples, at
m=0 andl =1, of the dependencies(12), because other cases
with mÞ0 and l .1 may be reduced to these examples by
rescaling the forcing amplitude by factorse±2p. The symmet-
ric solution (12b) is periodic in j0 and there is a minimal

forcing amplitudef0
min, so that no pulses exist atuf0u, f0

min.
However, in the general case whenl =1,2, . . .,infinite sets of
solutions appear and the minimumf0

min tends to zero. The
asymmetric solution(12a) at m=0 holds only when the
phasej0 is negative. Inserting Eq.(12) into Eq.(8) we obtain

j0
* = − j0 + 2pm, s13ad

j0
* = j0 + 2pl s13bd

for the A set(12a) and B set(12b), respectively. In particular,
for the (asymmetric) A set atm=0 both matching points are
placed symmetrically about zero,j0

* =−j0, whereas for the B
set atl =1 the second matching point is shifted by 2p from
the first one.

IV. STABILITY CRITERIA

The question now arises whether these pulse solutions are
stable. The details of the linear stability analysis of the front
solutions in forced(inhomogeneous) reaction-diffusion equa-
tions can be found, for example, in Ref.[2]. To investigate
stability, one considers a perturbed solution of the form
usjd+ ũsjdevt, whereusjd is the unperturbed solution,ũsjd is
a small perturbation, andv is its growth rate. The linearized
variational equation for the perturbation reads

d2ũ

dj2 + c
dũ

dj
− f1 + v − 2dsudgũ = 0, s14d

where dsud is the Dirac delta function. By satisfying the
boundary conditions the perturbation eigenfunction is ob-
tained as

ũ1sjd = B̃1e
l̃+j, j ø j0,

ũ2sjd = B̃21e
l̃+j + B̃22e

l̃−j, j0 ø j ø j0
* , s15d

ũ3sjd = B̃3e
l̃−j, j ù j0

* ,

where the signs ofl̃±=−c/2±Îc2/4+1+v;−c/2±g̃ are
taken into account.3 Computing the determinant of the matrix

at sB̃1,B̃21,B̃22,B̃3d for the system of matching equations we
obtain the growth rate equation. In the stationary case, it
reads

sg̃x − 1dsg̃x * − 1d = fūsj0dc=0g2g̃, s16d

whereg̃=Î1+v and the jump parametersx andx* are given
by

x = Z1 − ūsj0dc=0 + Udūsjdc=0

dj
U

j=j0

Z ,

2Except for the forbidden situation when cossj0d=0. This is true
for both cases Eqs.(12a) and (12b).

3Here we consider the case of the growth ratev having positive or
small negative values, so that 1+v.0.

FIG. 1. Amplitude versus phase in thesj0, f0d plane. Diagram
for stationary pulses under periodic forcing. The figure shows the
forcing parameter plane where(a) the asymmetric[A set, Eq.(12a)]
and(b) the symmetric[B set, Eq.(12b)] parameter sets are shown.
The A set is displayed form=0 and the B set withl =1.
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x * = Z1 − ūsj0dc=0 − Udūsjdc=0

dj
U

j=j0
*
Z . s17d

Here the pinning condition(7) has been taken into consider-
ation. From Eqs.(17), it follows that the jump parametersx
andx* are the same for constant forcing.

Now, to be specific, we use the periodic force(10). Then
ūsjdc=0=sf0/2dcossjd, and one can see from Eq.(13a) that
for the A set both jump parameters are equal,x* = x, and
hence the growth rate equation(16) reads

g̃x − 1 = ±S f0

2
cossj0dDg̃

s18d

with x= u1−sf0/2dfcossj0d+sinsj0dgu. For the B set[see Eq.
(13b)], the factorsx andx* are different,

x = U1 −
f0

2
fcossj0d + sinsj0dgU ,

x * = U1 −
f0

2
fcossj0d − sinsj0dgU , s19d

and Eq.(16) keeps its form. However, in the particular case
whenj0=pn, n=0, ±1, ±2, . . ., wehavex* = x and Eq.(16)
reduces to Eq.(18) for the B set as well.

The growth rate equations(16), (19), and (18) are pre-
sented graphically in Figs. 2 and 3, respectively. The curves
are plotted for the interval −3p /2,j0,3p /2. The diagram
in Fig. 2 shows that there are curvesv=vsj0d for positive
and negative values of the growth ratev. Therefore, there
are no stable pulses under forcing with the B set. The stabil-
ity of the pulses with the A set is especially noteworthy. In
this situation, there exist two curves on each interval(Fig. 3).
Each curve corresponds to a solution of Eq.(18) with a dif-
ferent sign on the right side. The equation with positive sign
describes the upper curve; the lower curve corresponds to
Eq. (18) with negative sign. In the interval(a) −p /2,j0,0

only the “plus sign curve” intersects the 0-j0 axis [Fig. 3(a)],
whereas on the interval(b) −3p /2,j0,−p /2 both curves
intersect this axis[Fig. 3(b)]. Since in the last case the curves
increase with growth of the phasej0, the stability behavior is
crucially defined in both cases(a) and (b) by the plus sign
curve. In each interval(a) and(b) (see Fig. 3), the A set has
two regions: the first region at −ps2k+1d /2,j0,jcrit

skd , k
=0,1, where the pulse is stable, and the second region at
jcrit

skd ,j0,−pk/2, where the pulse is unstable. To determine
the values of the critical pointsjcrit

skd we setv=0 in Eq. (18)
with plus sign. Theng̃=1 and we obtain the equation

U1 −
f0

2
fcossj0d + sinsj0dgU = 1 +

f0

2
cossj0d, s20d

which has two solutions: tansj0d+2=0 andsf0/2dsinsj0d−2
=0. For the second case, however, which is valid when
uf0u.4, there appear more than two matching points for the
pulse profile, because the particular solutionūsjd
=sf0/2dcossjd may then have a magnitude larger than unity
and the whole solutionusjd intersects the 0-j axis more than

FIG. 2. Growth rate dependencev=vsj0d for stationary pulses
under periodic forcing with the parameter set(12b). The curves in
the diagram are described by Eqs.(16) and (19) with l =1 and
plotted in the interval −3p /2,j0,3p /2.

FIG. 3. Growth rate dependencev=vsj0d for stationary pulses
under periodic forcing with the set(12a). The curves in the diagram
are described by Eq.(18) with m=0 and plotted in the intervals(a)
−p /2,j0,0 and(b) −3p /2,j0,−p /2. The upper curve corre-
sponds to the plus sign on the right side of Eq.(18) and the lower
one to the minus sign.
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twice.4 This situation is beyond the scope of the present
problem. Therefore, the appropriate solution is only the first
one,jcrit

skd =−arctans2d<−1.11,−4.25 fork=0,1, respectively.
These values are precisely the same positions as those of the
local extrema of thej0-f0 curve in Fig. 1(a) in the intervals
(a) and (b). Indeed, from Eq. (12a) it follows that
df0sj0d /dj0=0 whenj0=−arctans2d.

All of the preceding is intended to illustrate the behavior
of the waves under forcing and explore the stabilization cri-
teria. Now it is instructive to present the concrete pulse pro-
files. They are exhibited in Figs. 4 and 5 for the B set and A
set, respectively. In both cases the pulse profile may be sym-
metric or asymmetric to the 0-u axis. But form=0 the pulses
corresponding to the A set have symmetric profiles. The
pulses for the B set are usually asymmetric, and there is only
one specific phase value,j0=−pl, when the pulse with the B
set is symmetric. In this case, both equations(12a) and(12b)
give the same forcing amplitude, i.e., both pulse solutions
coincide. The pulse for this situation is displayed in Fig. 4(b)
for l =1. The value of the forcing amplitude is extremely
small and the oscillations in the wave profile are difficult if
not impossible to detect. There are pulses with one[Fig.
5(a)] and many crests. The many-crest pulses[Fig. 5(b)] can
appear for both sets, which requires a large value of the
phase differenceDj=j0

* −j0. The stable and unstable pulse
profiles are similar, so that in Fig. 5 only stable pulses are
depicted.

V. CONCLUDING REMARKS

The wave stabilization phenomenon takes place for many
forcing functions. For example, we have also considered a

simple polynomial functionf̄sjd= f0−j2, f0=const, as forc-
ing. The minus sign and the quadratic function5 here are
essential to provide only two matching points in the pulse
profile and thef0 term—to realize(satisfy) the restriction
condition (9). The particular solution readsūsjd= f0−j2

−2sc2+cj+1d, and the pinning condition(7) yields j0
* =−j0,

i.e., the stationary wave profile is symmetric about the 0-u
axis. For this type of solution, the jump parametersx andx*
are equal to one another and the growth rate equation takes
the form like Eq.(18)

g̃x − 1 = ± ff0 − j0
2 − 2gg̃, s21d

with x= u3− f0−2j0+j0
2u. From Eq.(21), one may find that,

for example, when the forcing parameter isf0=2.5, the pulse
is stable for the phasesj0=−0.7, . . . ,−0.64(the interval of
validity is constrained by −1/Î2,j0,0).6

In conclusion, we emphasize the main result of the work:
there exist forcing parameter intervals such that the pulse
wave can be stabilized by periodic external forcing.We have

4We are reminded here that the fixed points of the unforced sys-
tem are placed atusj→ ±`d=−1.

5Here we still investigate the stability of the pulse solution. If we
consider the front wave, then the simplest polynomial function is a
linear ramp.

6This is just an illustration. We did not perform the regular com-
putations and the analysis of curves.

FIG. 4. Pulse profiles with the set(12b) when(a) j0=−1.56 and
(b) j0=−p. The case(b) illustrates also a pulse with the A set[at
this j0 value the expressions(12a) and(12b) yield the same result].
Both pulses are unstable.

FIG. 5. Pulse profiles with the parameter set(12a) when (a) j0

=−1.2 and(b) j0=−4.712. Both pulses are stable.
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demonstrated this result for the stationary case, i.e., for the
spatial forcing. Since the pulse may be interpreted as a bound
pair of fronts and then the pulse stability depends on the
interaction between these fronts[1], the aim of our new re-
search is to construct a pair of fronts moving with different
velocities or, in other words, a pulse with growing or shrink-
ing profile. The calculations will illustrate how waves(front
and back) interact during collisions, and how they are influ-
enced by local distrurbances. There exist many interesting

phenomena in periodically forced reaction-diffusion systems
to be explored[7].
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